Analysis of trajectory entropy for continuous stochastic processes at equilibrium.
نویسندگان
چکیده
The analytical expression for the trajectory entropy of the overdamped Langevin equation is derived via two approaches. The first route goes through the Fokker-Planck equation that governs the propagation of the conditional probability density, while the second method goes through the path integral of the Onsager-Machlup action. The agreement of these two approaches in the continuum limit underscores the equivalence between the partial differential equation and the path integral formulations for stochastic processes in the context of trajectory entropy. The values obtained using the analytical expression are also compared with those calculated with numerical solutions for arbitrary time resolutions of the trajectory. Quantitative agreement is clearly observed consistently across different models as the time interval between snapshots in the trajectories decreases. Furthermore, analysis of different scenarios illustrates how the deterministic and stochastic forces in the Langevin equation contribute to the variation in dynamics measured by the trajectory entropy.
منابع مشابه
Trajectory Entropy of Continuous Stochastic Processes at Equilibrium.
We propose to quantify the trajectory entropy of a dynamic system as the information content in excess of a free-diffusion reference model. The space-time trajectory is now the dynamic variable, and its path probability is given by the Onsager-Machlup action. For the time propagation of the overdamped Langevin equation, we solved the action path integral in the continuum limit and arrived at an...
متن کاملThe Rate of Entropy for Gaussian Processes
In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...
متن کاملInformation Geometry of Non-Equilibrium Processes in a Bistable System with a Cubic Damping
A probabilistic description is essential for understanding the dynamics of stochastic systems far from equilibrium, given uncertainty inherent in the systems. To compare different Probability Density Functions (PDFs), it is extremely useful to quantify the difference among different PDFs by assigning an appropriate metric to probability such that the distance increases with the difference betwe...
متن کاملStochastic approach to equilibrium and nonequilibrium thermodynamics.
We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assump...
متن کاملOn $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov processes
In the present paper we investigate the $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov processes with general state spaces. We provide a necessary and sufficient condition for such processes to satisfy the $L_1$-weak ergodicity. Moreover, we apply the obtained results to establish $L_1$-weak ergodicity of quadratic stochastic processes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 118 28 شماره
صفحات -
تاریخ انتشار 2014